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We consider the situat,ion where a deep-water wavetrain approaching from infinity 
forms a circular caustic, is glancingly reflected at the caustic, and then propagates on 
out  to infinity. At every point in the wavefield there are two wavetrains, the incident 
and reflected waves. Thus the wavefield can be treated as a slowly varying field of 
short-crested waves. This work generalizes that of Peregrine ( 1981) who considered 
a wavefield of incident waves only. The problem is formulated using the averaged- 
Lagrangian variational approach of Whitham (1974). Owing to the circular 
symmetry of the problem, the governing differential equations can be reduced to a 
set of algebraic equations at each radius. Results for the wave steepness and 
wavenumber are presented. These indicate that the nonlinear caustic occurs a t  a 
larger radius than does the linear caustic, and that the ray paths are no longer 
straight but, curve away from the caustic. It is found that the slowly varying 
assumption is invalid a t  the caustic radius. To overcome this we derive, by the 
method of multiple scales, a modified nonlinear Schrodinger equation which is valid 
in this region. The solution of this equation, involving the second Painlev6 
transcendent, is then asymptotically matched to the slowly varying solution to 
provide a complete description of the wavefield. 

1. Introduction 
Caustics are of interest in a wavefield because of the large wave amplitudes that 

occur in these regions. They can arise in many physical situations such as water 
waves on a current, a sea-bed topography that causes waves to converge in a region, 
or refraction of waves due to shallowing depth. Caustics are regions in the wavefield 
at which linear slowly varying theory (also called linear ray theory) predicts an 
infinite wave amplitude. The theory is not valid in the region of the caustic as the 
large wavc amplitude invalidates two important assumptions, that  the wave 
properties are slowly varying and that the waves are infinitesimal. Here we derivc a 
complete description of a wavefield of weakly nonlinear waves that involve a 
caustic. 

A noteworthy situation that may involve caustics (see Smith 1976) occurs off the 
south-east coast of South Africa. Here giant waves have caused extensive damage to 
shipping (Mallory 1974). The Agulhas current flows down the coast at 4-5 knots and 
is 90-165 km wide. Ships taking advantage of this current have encountered giant 
waves (of the order of 15 m) when the wind produces waves travelling in opposition 
to the current. 

Many authors have studied the phenomena of waves on currents. Smith (1976) 
studied the phenomenon described above, that of giant waves on the Agulhas 
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current. He considers a deep-water wavetrain opposed by a steady irrotational 
current, which is reflected by a straight caustic. By a method similar to that of 
multiple scales, and using a perturbation expansion in a parameter related to current 
velocity and current gradient, he derives a modified nonlinear Schrodinger equation 
which describes the behaviour of the wave amplitude. He shows that the wave profile 
can be asymmetric and thus the wave peaks have extremely steep leading edges 
which can pose a danger to shipping. Smith (1975) considered the reflection of short 
gravity waves on a current. If the velocity of the current is below a certain critical 
value, the ‘stopping velocity’, then wave reflection does not occur. Stiassnie & 
Dagan (1979) have considered the situation in which the current velocity is near this 
critical value and found that partial reflection occurs. 

In Peregrine & Smith (1979) a weakly nonlinear theory for dispersive waves near 
caustics is discussed. An averaged-lagrangian method is used and results are 
presented for straight and curved geometries. Their main result is that nonlinearity 
produces caustics of two different types which they label ‘ R ’  and ‘ 8 ’ .  The R-type 
caustic has a singularity in the slope of the amplitude before the position of the linear 
caustic is reached. This singularity may occur a t  a sufficiently small amplitude for 
the weakly nonlinear approximation to  remain valid. The S-type caustic has no 
singularity but the wave amplitude increases rapidly past the position of the linear 
caustic causing the weakly nonlinear theory to become invalid. The R-type caustic 
is physically interpreted as a reflection of the waves (so long as the wave amplitude 
is small enough), while the S-type caustic is interpreted as causing the waves to 
break. 

Schwartz (1974) considered a perturbation expansion in wave steepness to describe 
progressive gravity waves of permanent form. He used PadB approximants to obtain 
accurate results up to the highest wave. Longuet-Higgins (1975) and Cokelet (1977) 
used similar techniques to calculate various properties of progressive waves. These 
tabulated properties have been used to study the refraction, reflection and breaking 
of finite-amplitude water waves in various situations, using only the approximation 
that the nonlinear wavetrain has slowly varying properties. 

Peregrine & Thomas (1979) consider finite-amplitude water waves on currents by 
using these tabulated properties to calculate an exact Lagrangian, which is then 
used to describe slowly varying finite-amplitude water waves. In one case they 
consider a current a t  90” to the wavetrain. The waves are refracted by the current 
gradient and if the wavetrain becomes parallel to the current a caustic of R-type 
arises giving reflection. In the second case they consider a current opposed to the 
wavetrain. This produces an S-type caustic and represents wave breaking, although 
if the wavetrain propagates to the ‘stopping velocity’ with a small steepness 
reflection may occur. 

Using a similar technique Ryrie & Peregrine (1982) and Peregrine & Ryrie (1983) 
examine finite-amplitude water waves obliquely incident onto a beach. A caustic of 
&type results and near the caustic ‘conjugate’ solutions exist. A wavetrain 
approaching the beach from deep water will steepen and be refracted to propagate 
normal to the beach until it breaks in the lead up to the caustic singularity. However 
the solution of higher amplitude corresponds to a wavetrain that is refracted to 
propagate parallel to the beach. This behaviour is termed ‘anomalous ’ reflection. 

Peregrine (1983) considers the possibility of wave jumps between conjugate 
solutions. For the example described above, wave jumps can only occur for obliquely 
incident waves (see figure 3 of Peregrine & Ryrie 1982). He also considers the 
problem examined by Yue & Mei (1980), that of waves incident onto a wedge of small 
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FIGURE 1 .  Perspective drawing of a wavefield with a circular caustic when 8 wavelengths wrap 
around the caustic. The centre of the caustic is in the corner on the left side of the drawing. 

FIGURE 2. Ray paths of the linear ray solution, where the radius of the caustic is R.  

angle. Wave jumps can occur for this example and he presents an analysis for a single 
deep-water wavetrain incident upon a wedge. His figure 3 gives the jump angle if the 
wave steepness is specified on both sides of the jump. Thus it is possible, where 
conjugate solutions exist, that one or more wave jumps will occur, causing the 
wavefield to be significantly modified. 

Peregrine (1981) in a similar manner to Peregrine & Thomas (1979) considered 
waves approaching a circular caustic. Figure 1 shows a perspective drawing of a 
circular caustic. He characterized the problem by a caustic parameter C (figure 2 
shows this situation except that Peregrine does not consider the reflected wave). The 
caustic is of R-type and conjugate solutions exist for sufficiently large C. This type 
of caustic usually indicates reflection of the wavetrain from the caustic (but if the 
amplitude of the wave becomes too large in the approach to the caustic then wave 
breaking will occur). When reflection occurs from such a circular caustic a short- 
crested-wave system is formed (see figure 1). However, the properties of short-crested 
waves (see Roberts 1983 or Marchant & Roberts 1987) can vary markedly from the 
progressive wave properties used by Peregrine. 

Mizuguchi & Peregrine (1984) examined the question of whether waves 
approaching a circular caustic will produce free second-harmonic waves. Using 
weakly nonlinear theory they derived first- and second-order solutions in terms of 
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Bessel functions. They showed that a t  second order only forced harmonics existed, 
thus ruling out the possibility of second-order free harmonics. 

This work extends the work of Peregrine (1981) on the circular caustic to include 
both the incident and reflected wavetrain. According to the linear ray theory, wave 
properties propagate along straight lines, thus figure 2 represents the linear ray 
solution to the problem we shall solve. I n  this solution the deep-water waves 
propagate towards the caustic, meet it a t  radius R, and then propagate away from the 
caustic. Far from the caustic the solution consists of two wavetrains propagating in 
nearly opposite directions and so looks like standing waves. Close to the caustic the 
two wavetrains propagate in nearly the same direction and so long-crested waves are 
found (Roberts & Peregrine 1983). In  between, the wavetrains propagate a t  an angle 
to each other and short-crested waves occur. Our full weakly nonlinear slowly 
varying solution (also referred to as the nonlinear ray solution) will modify this 
picture by including the nonlinear interaction between the two wavetrains. 

A variational approach, as developed by Whitham (1965, 1974), Ablowitz & 
Benney (1970) and Ablowitz (1971, 1972, 1975), is used in $2 to formulate the 
interaction of the two nonlinear slowly varying wavetrains. Whitham considered a 
singly periodic (one-phase) wavetrain and derived variational equations that 
describe the slowly varying properties (amplitude, wavenumber and frequency) of 
the wavc. Ablowitz extended this to the case of wavetrains with multiple periodicities 
(multiple phases) and illustrated his equations by discussing various nonlinear 
Klein-Gordon equations. In  this work the averaged Lagrangian is calculated for the 
case of two deep-water wavetrains (the incident and reflected waves) by substituting 
truncated expressions for the velocity potential q5 and the free-surface shape 7 into 
the Lagrangian. The variational equations thus obtained are then solved exactly 
using an iterative scheme. 

In  $3  the linear ray solution is presented; this section introduces and clarifies the 
nature of the parameters in the later solution. In  $ 4  we modify the model to include 
only the incident waves; this is the same situation that Peregrine (1981) studied 
using an exact Lagrangian. As expected our results reproduce his for low-amplitude 
waves with some variation for large-amplitude waves. In  $5  the results for the full 
short-crested wavc system formed by the presence of both the incident and the 
reflected waves are presented. Also considered is the angular ‘Stokes drift’ for this 
wavefield. 

In $5 we note that the slowly varying assumption is invalid at the caustic radius. 
In $6  an equation valid in the region near the caustic is developed by the method of 
multiple scales. The equation, a modified nonlinear Xchrodinger equation, involves 
the second Painlevd transcendents in its solution. Asymptotic expansions for the 
second Painlevd transcendent, as given in Peregrine & Smith (1979) or Miles (1978), 
are then used to match the near-caustic solution to the nonlinear ray solution to 
provide a uniformly valid description of the wavefield. 

2. Variational formulation of the problem 
2.1. The variational principle for two interacting wavetrains 

We wish to describe the interaction of two nonlinear slowly varying deep-water 
wavetrains. To accomplish this we use Whitham’s (1974) variational formulation. 
This formulation includes a local averaging which removes the oscillations of the 
wave motion from the equations leaving the slow variations in space and time of 
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amplitude, wavenumber and frequency to be found. The averaged Lagrangian is 
obtained by substituting expressions for the wave motion into the Lagrangian and 
then averaging. The equations obtained from the averaged Lagrangian by varying 
the parameters in the expression then describe the slow variations of the wave 
properties. We consider a coordinate system where x, y are horizontal coordinates 
and the z-axis is vertically up. Upon assuming that the fluid is incompressible and 
inviscid and that the fluid motion is irrotational we consider a velocity potential $ 
and a free surface shape 7 given by 

Q, = $(@,> 0 2 ,  z ) ,  7 = ?(@,, @,), (2.1) 

where O,(x, 9, t) and 0,(x,  y, t )  are two phase functions. Thus $ and 
both 0, and 0, with period 2x, and 

are periodic in 

where kj  are the wavenumber vectors and wi are the frequencies of the two phases. 
For simplicity we only consider deep water, for which the Lagrangian, as proposed 
by Luke (1967) is 

where p is the density of water and g is the gravitational acceleration. We write 4 and 
7 in the following truncated form: 

Q, = b, elc,' sin (0,) + b, ekZz sin (0,) + 6, e2lclZ sin (20 , )  + b, ezkZz sin (20,) 

+ b, elkl+"zlz sin (0, + 0,) + b, e~kl-k~~z sin (0, - 0,), (2.4) 

and 

7 = a, cos (01) + a3 cos (0,) + a2 cos ( 2 0 1 )  + cos (20,)  

+a, ~ o s ( ~ , + @ , ) + u ,  COS(@,-@,). (2.5) 

Normally b,, b,, a ,  and a, will be of first order in wave amplitude while the other 
coefficients will be of second order. The largest neglected higher harmonics in these 
expressions will be of third order ; thus this analysis is valid only for waves that are 
not too high. 

Upon substituting the above expressions into (2.3) and using (2.2) we find an 
expression for L :  

(2.6) 

Assuming a,, b,, wj  and ki to be slowly varying functions of space and time and thus 
effectively constant over a wave period, we define the averaged Lagrangian to be 

L = L(a,, b,, wi ,  k,, O j ) .  

I, is truncated to fourth order, as the neglected harmonics first contribute at sixth 
order. L contains the information about the interaction of the slow variations in 
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amplitude. wavenumber and frequency of the two wavetrains. According to 
Whitham (1974) the variational equations to be solved are then 
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La'=o} i =  1,  . . . ,  6> tbZ = 0 

(2.9) 

Equations (2.8) are the results of variations of I, with rcqect to the independent 
amplitude variables. The last of thc equations (2.9) is the result of variations with 
respect to the indfpndent  phasc: f*,nc%ion 0,. Thc remaining equations in (2.9) arc 
conditions on k, and w )  that ensurc that 0, exists. 

2.2. The circular caustic 
We assume that grazing reflection past a circular caustic occurs and that a short- 
crested wave system is formed in which the inc'ident and reflected wavetrains have 
identical properties except that they travel in different directions (hence there is no 
loss of energy). Therefore, letting k,  be the wavenumber of the incident wave and 
k,  be the wavenumber of the reflected wave we deduce that 

k,  = -k,e,+k,e,, k ,  = +k,e,+k,e,, (2.10) 

and a ,  = a3, a2 = a4, b, = b,, b, = b,, w1 = w,, (2.11) 

where k,  and k ,  represent the radial and angular wavenumber components 
respectively and e, and e, represent unit vectors in the direction of increasing r and 
the direction of increasing 8 respectively. Figure 2 shows this situation where R 
represents the radius of the caustic (according to the linear ray theory of $3).  We 
assume that the properties of the wavefield are steady (slat = 0) and axisymmetric 
(a/W = 0);  hence the solution depends only on r .  Thus (2.8) can be simplified, and 
(2.9) can be integrated with respect to r to give 

(2.12) 

where R, w and A are integration constants. 

angle between k,  and k,, and k = k1 = k2. Then we may write 
To calculate in a relatively simple form (see the Appendix) we let $ be half the 

k, = Ea, k, = kp ,  (2.13) 

where a = sin ($), ,8 = cos (k), (2.14) 

and obtain L = L(ai, bi, w ,  I c ,  a, p). (2.15) 
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The last equation in (2 .12 )  then becomes 

(2 .16 )  

For simplicity we non-dimensionalize the problem with respect to the reference 
length 27t/k, and the reference time (gko)- i ,  where k, is the wavenumber of the waves 
a t  infinity; thus w = 1. Further, we emphasize that the non-dimensional wavelength 
of the incident waves is 27t and so the slowly varying assumption is valid only if 
variations in wave properties occur on a lengthscale that is larger than this. 

The equations obtained, ( 2 . 1 2 ) ,  are a set of algebraic equations for the short- 
crested wavefield formed by the incident and reflected waves which must be solved 
a t  each radius r (the details of the equations can be found in the Appendix). The 
equations are too complicated to find an explicit analytic solution and so are solved 
numerically for each radius using a variation of Newton’s method. 

3. The linear ray solution 
We first consider the linear ray solution to illustrate clearly our solution technique 

and also to highlight the changes that occur when nonlinearity is introduced. To 
obtain the ray solution to this problem, as seen in figure 2 ,  we consider just the 
lowest-order terms in L (i.e. the terms of second order). Thus we neglect the nonlinear 
interaction terms with coefficients a2, a4, as, a,, b,, b,, b, and b,. Then we obtain 

(3 .1 )  

E =  ~ ; + k b f - 2 w b , a , ,  

La, = 2a, - 2wb,, 

Ek = bf, La = 0, Zp = 0. 

Lbl = 2kb, - 2wa,, 

Hence the solution of (2 .12)  is 

\ w = 1, k, = R / r ,  k, = [ l -  (R/r)2] i ,  

The amplitude becomes infinite, like (r-R)-i as r + R ;  hence the integration 
constant R determines the radius of the circular caustic. The integration constant A 
determines the overall amplitude of the wavefield ; this is because the energy density 
of the waves is proportional to a; - A / r  as r + co. The wave amplitude is taken to 
be zero inside the circular caustic, that is in r < R. 

The caustic radius R is related to the number of waves around the caustic which 
a t  any radius is given by rk,. From (3.2), and also for the full problem ( 2 . 1 2 ) ,  this is 
just R. Thus R can also be interpreted as the number of waves around the caustic. 
The solution is required to be periodic so R must be an integer to obtain a physically 
realizable solution. 

If a ray path is described by r (8)  then its tangent is in the direction of the local 
wavenumber, and so 

dr rk, 
d8 k,’ 
- =- (3 .3 )  
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FIGURE 3. Wave steepness a,  k versus radius r / R  for a purely incident wavefield. Compared are 
the present theory (-) and Peregrine’s (1981) results (----) for A I R  = 0.008 (lower curves) and 
AIR = 0.2 (upper curves). 

With k, and k, as given by (3.2) the solution of (3.3) is 

R 
sin(0-y)’ 

r =  (3.4) 

where y is an arbitrary constant of integration. As expected, the ray path is seen to 
be a straight line a t  an angle y to the x-axis and passing a distance R from the origin 
(see figure 2) .  

4. Solutions with only an incident wavefield 
If we let the free-surface shape y and the velocity potential 6 be a function of one 

phase function only, that is y = ~(0,) and 4 = $(0,, z ) ,  then our model will be the 
same as Peregrine’s (1981) model in that only the incident wavetrain is considered. 
However, our model is only weakly nonlinear and hence is more restricted than 
Peregrine’s. The solutions we examine here are relevant both as a check of our 
method and also if the incident waves break somewhere in the wavefield. 

Peregrine’s caustic parameter C is related to our amplitude parameter A and the 
caustic radius R by the relation 

A 4  _ -  
R - E .  

Figure 3 shows our results for wave steepness a, E versus r / R  the radius parameter, 
for A I R  = 0.008 and 0.2 compared against Peregrine’s results for these values. For 
AIR = 0.008 they compare well but for AIR = 0.2 there is some variation and we 
obtain about a 10% difference in the radius at which the caustic singularity occurs. 
This is due to the fact that Peregrine used an exact Lagrangian which is more 
accurate a t  large wave steepnesses than our weakly nonlinear Lagrangian. The 
caustic is of an R-type and hence represents reflection as long as the wave steepness 
is small enough in the approach to the caustic. Where reflection does occur the model 
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r l R  
FIGURE 4. Wave steepness a,k  versus radius r /R for the combined incident and reflected 
wavefields. Shown is the present theory (-) for A / R  = 0.008, 0.04,0.08 and 0.2 (lower to upper 
curves respectively). Shown for comparison is the linear theory (----) for A / R  = 0.008. Also given 
are estimates of the maximum steepness of the short-crested wavefield a t  the caustic radius 
(---). 

containing both the incident and reflected wavetrains, of the next section, is 
appropriate. 

It can be seen that ‘conjugate’ solutions exist near the caustic. The lower branch 
of solutions corresponds to the linear solution in the limit as AIR-tO. The higher 
branch of solutions, which exists over a finite range o f r / R ,  are approximately waves 
with radial crests which move in a purely angular direction (k, = 0) and have wave 
steepness increasing with r/R. In  the limit AIR + 0 (by letting k, + 0, not a ,  --f 0 as 
for linear waves) the higher branch of solutions approaches the radial solutions of 
Peregrine (1981, 95). 

5. The combined incident and reflected wavefields 
5.1. Discussion of results 

In this section we return to  the model that includes both the incident and reflected 
wavetrains. Figure 4 shows the wave steepness a, k versus r / R  for AIR = 0.008,0.04, 
0.08 and 0.2. In each case the results are qualitatively similar to Peregrine’s, i.e. a 
singularity occurs a t  finite wave steepness before the linear caustic radius is reached. 
However, there are quantitative differences ; for example, our theory predicts that  
the singularity occurs at a larger radius than in Peregrine’s theory (which only 
contains the incident wave). 

Also included in figure 4 are estimates of the maximum steepness of short-crested 
waves (from Roberts 1983) for the short-crested waves found at the caustic. Since the 
wavefield varies from near standing waves far from the caustic to long-crested waves 
near the caustic (which have different maximum steepnesses) the possibility exists 
that  the waves break somewhere in the wavefield before the caustic is reached even 
though the wavefield has a wave steepness below the maximum wave steepness a t  
the caustic. This occurrence is unlikely though : the maximum wave steepness is 
smallest in the long-crested region of the short-crested-wave parameter range. Hence 
if a wavetrain has not reached maximum wave steepness at the caustic it is unlikely 
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to have reached it elsewhere in the wavefield. Figure 4 shows that for A I R  = 0.008 
and 0.04 the wavefield has everywhere a wave steepness below the maximum wave 
steepness. In  this case the singularity is interpreted as the nonlinear caustic at which 
reflection occurs and the two-phase analysis presented here must be used to represent 
the resultant short-crested wave system. 

For AIR = 0.08 and 0.2 the caustic singularity occurs at a wave steepness greater 
than the maximum short-crested wave steepness, thus wave breaking must occur 
somewhere in the wavefield. This is inconsistent with the assumption that no energy 
is lost as the waves propagate. In  this case Peregrine’s model, as discussed in $4, is 
more appropriate. 

Since conjugate solutions exist, wave jumps can occur. Hence the possibility exists 
that owing to wave jumps the wavefield will be modified and the problem we are 
describing will not occur. For example, the incident wavetrain would be only 
partially reflected a t  a wave jump, thus violating our assumption of perfect 
reflection. However, such a wave jump is unlikely to occur (see Peregrine 1983, 
p. 444). Behind a wave jump the waves would travel in a purely angular direction 
(the limit as k, -20 of the second solution branch). This is expected by analogy with 
Yue & Mei (1980) where behind the wave jump the waves travel parallel with the 
reflecting wedge. But on the other side of the wave jump the waves would have a 
radial component. Hence the creation of a steady wave jump is unlikely. It should 
be noted however that unsteady wave jumps would be possible, dependent on how 
the caustic is created. 

One point of interest is the nonlinear ray paths of the incident and reflected waves. 
To obtain a ray path r (@, we solve the differential equation (3.3) numerically. At 
infinity the ray path is virtually straight, but as the ray approaches the caustic it is 
bent away from the caustic. At the nonlinear caustic the ray is reflected, and 
propagates outwards to  infinity (along a ray that is a reflection of the incident wave), 
thus setting up a short-crested wave system. Note that the reflection is ‘sharp’, that 
is the radial wavenumber is not zero a t  the caustic. Thus the assumption that the 
wave properties are slowly varying is invalid a t  this radius as the radial wavenumber 
is rapidly changing (as is the wave amplitude also). 

The solution to the problem of waves approaching a circular caustic can also be 
described in terms of Bessel functions (see Peregrine 1981 or Mizuguchi & Peregrine 
1984). Figure 5 shows the surface elevation 7 versus r / R  for the linear Bessel-function 
solution. AIR = 0.06 and there are 40 waves around the caustic. For comparison, the 
wave steepness a, k for our weakly nonlinear model is also shown. As can be seen our 
weakly nonlinear results form an ’envelope ’ over the linear Bessel-function solution. 
Far from the caustic our weakly nonlinear results form a near-exact envelope over 
the linear Bessel-function solution but as the caustic is approached there is some 
deviation and our weakly nonlinear envelope is of lower steepness than the linear 
Bessel-function solution. Also the weakly nonlinear caustic singularity occurs before 
the radius a t  which the linear Bessel function reaches its maximum surface 
elevation. 

5.2. The ‘Stokes drift’ of the wavejield 
According to linear theory a fluid particle when being acted upon by a sinusoidal 
wave in deep water will trace out a circular path, the time taken to complete a cycle 
being the period 2 x 1 ~ .  However, calculating a fluid particle’s path to higher orders 
results in a correction to that path. In  particular the mean horizontal velocity is no 
longer zero, this quantity being known as the ‘Stokes drift’. 
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FIGURE 5. The surface elevation 7 versus r /R for the linear Bessel-function solution. A I R  = 0.06 
and there are 40 waves around the caustic. Drawn above this is the wave steepness a,k versus 
radius r /R for the combined incident and reflected wavefields. 

For the circular caustic problem under discussion we shall consider the angular 
Stokes drift and calculate the lowest-order term (of order two) of this quantity (see 
Lighthill 1978, p. 280). To first order, 

4 = b, elcz sin (0,) + b, ekz sin (Q2).  

2 = ?/d = d -kb, elcd COS (0,) - kb, elcd COS (0,) 

(5.1) 

Now a fluid particle a t  depth z = d in the undisturbed fluid will be at depth 

(5 .2 )  

a t  time t (to first order). The average momentum over a wave period in the angular 
direction of the fluid particles between the undisturbed level z = d and z = - 00 is 

Integrating (5 .3)  gives 
M = pk ,  b; e21cd (5.4) 

to second order. Thus by differentiating (5.4) with respect to d we obtain as the 
second-order contribution to the angular Stokes drift a t  the depth d 

2k,kb; e21cd. (5.5) 

In this calculation the first neglected terms will be of fourth order so this result is 
valid for waves not too high. However, it is worth noting that the second-order terms 
in (2.4) (only b,, b, and b, as b, = 0) decay like e2kd as d+ - cx). So the result (5.5) is 
valid for estimating the Stokes drift sufficiently deep in the fluid regardless of wave 
steepness. 

Figure 6 shows the angular Stokes drift versus r / R  for d = -0.1, -0.2, -0.4 and 
-0.8 when A / R  = 0.04. The angular Stokes drift is shown for the combined incident 
and reflected wavefield in the linear and in the weakly nonlinear theory, and it 
increases as the caustic is approached and also is larger near the surface of the fluid. 
As can be seen from the diagram the weakly nonlinear theory predicts a significantly 
larger angular Stokes drift than linear theory. 
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FIGURE 6. The angular Stokes drift versus radius r / R  for the  combined incident and reflected 
wavefields. Shown is the present theory (-) for A / R  = 0.04 at depths d = -0.1, -0.2, -0.4 and 
-0.8 (upper t o  lower curves respectively). Shown for comparison is the linear theory (----). 

6. The region near the nonlinear caustic 
6.1. The modiJied nonlinear Xchrodinger equation 

In  the previous section it was found that one of the assumptions, that  the wave 
properties be slowly varying, was invalid near the caustic. Here we derive an 
equation that is valid in this region, and the solutions will then be matched onto the 
nonlinear ray solution of $5 .  We derive this equation by the method of multiple scales 
in a manner similar to Smith’s (1976) derivation of his model equation for the case 
of a wavetrain approaching a straight caustic. Since the waves near the caustic look 
like a long-crested wavefield the derived equation is a nonlinear Schrodinger 
equation, but modified by the presence of the caustic. 

In deriving the nonlinear Schrodinger equation we follow the usual technique as 
used by Smith (1976) or Yue & Mei (1980). Owing to the circular symmetry we write 
Laplace’s equation and the usual boundary conditions in cylindrical coordinates 
( r , 8 , z )  and to investigate the region near the caustic we define new coordinates 

We envisage that R is approximately the radius of the caustic and is assumed large ; 
p measures the distance from the caustic and hence p/R is small. The coordinate f; 
measures distance around the caustic. Upon substituting (6.1) into Laplace’s 
equation and tho boundary conditions and expanding in the parameter p/R,  first- 
order equations in p /R  are obtained. 

We define a small parameter E by e3 = 1/R and introduce the new long-space, slow- 
time variables 

and x = (--t ,  where c is the group velocity. The conditions at infinite radius require 
that there are precisely R waves around the caustic and that the frequency w = 1.  
Thus x will serve as the phase function of the waves around the caustic. 

x = ep, Y = E ( f ; - - C t ) ,  T = € 2 t ,  (6.2) 
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We assume a perturbation expansion of the form 

$ = q$(X, Y,T ,X,  z )  + E 2 $ 2 ( X ,  Y,T ,X,  z ) +  ‘..>I 
J (6.3) 

7 = ey,(X, y ,  T ,  x) + +z(X ,  y ,  T ,  x) + . . ., 
and write the leading-order equations in terms of the new variables (6.2) and the 
phase function 2. The perturbation expansions (6.3) are substituted into the leading- 
order equations, terms of the same order are grouped together, and then the resultant 
equations are solved in succession. 

At first order the solution is 

$ 1 -  - - i d  ei,y+kz+c.c., yl = d eiX+c.c., (6.4) 

where d = d ( X ,  Y , T )  is an amplitude coefficient. The second-order solution is 

$, = - d Y z eix+kz +e.c., v z  = - i + d y  e’X+d* ei2X+c.c.. (6.5) 

At all orders we require that the coefficients of the secular term eiX on the right-hand 
side of the equations be zero. At third order this condition gives the equation 

i d ~ , + ~ d x x - ~ d y y + X d - 4 ( d ~ 2 y Q 2  = 0. (6.6) 

This is the modified nonlinear Schrodinger equation ; its solutions involve Painlev6 
transcendents of the second kind. 

We consider steady solutions for the wavefield properties (dT = O) ,  and also 
recognize that there will be no dependence upon Y (dyy = 0) as there are always R 
waves around the caustic. By reverting to the original unsealed variables and 
defining the unscaled amplitude a(p) = e d  we obtain the equation 

&,. - Z’F - 2 p y F  = 0, (6.7) 

where 

The solutions of (6.7) are Painlev6 transcendents of the second kind (see Miles 1978). 
Following Miles’ notation the relevant solutions are the one-parameter family F = 
E”(z’,a-). When a- = 0 the solution of the resultant linear equation is an Airy 
function. In  fact Painleve’ transcendents are qualitatively similar to Airy functions 
with the transition from sinusoidal to exponential behaviour displaced from z‘ = 0 to 
negative z’ (i.e. larger p )  as the nonlinearity a- increases. 

6.2. Matching the solutions 
The modified nonlinear Schrodinger equation is valid in a region near the caustic. 
The nonlinear ray solution is valid nearly to the caustic radius. Our aim here is to find 
a region in which both solutions are valid and then asymptotically match them to 
obtain a uniformly valid description of the wavefield. 

The surface elevation of the nonlinear ray solution is 

r ( r ,  8 ,  t )  = 2a1 COS (@I; ___ @Zj cos (0’ ~ ; “2) + 2a, cos (0, - 0,) cos (0, + 0,) 

+a, C O ~ ( @ , + @ , ) + U ,  COS(@,-@,), (6.8) 
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where all variables have been previously defined. Now VOj = k,, where the k, are 
given by (2.10). This implies that 

0, = - k,dr+RB-t, 0, = s 
We now consider the nonlinear ray solution as it approaches the caustic for small 

amplitudes. To concentrate on this approach we introduce a small parameter S which 
relates the magnitudes of various quantities by 

(6 .10)  a,, b, = 0(6) ,  - = o(s), k,  = o(&) as 6+0. 

By considering the variational equations (2.12) and equations (2.13) we find the 
following leading-order expressions : 

P 
R 

P - k B -  l -z’  P a = O ( @ ) ,  

a2 - iaf, a, - a;, a6, b,, b,, b, - 0. 

A - Z’ and w2 - k( 1 + 3k2a3, k, af 

(6.11) 

(6.12) 

The first of equations (6.12) implies 

k; - 2 - - 6 ~ :  P (6.13) R 
and substituting for k, from the second of equations (6.12) gives 

(6 .14)  

This mixed-order equation is equivalent to (3.9) in Peregrine & Smith (1979) and 
describes the near-pitchfork structure near the caustic (see figure l a  in the above- 
mentioned paper). If we consider just the lowest-order terms in (6.14) (a; = 0(J6) 
while the other terms are O(6’)) we obtain the leading-order expressions 

(6.15) 

This expression for a, just describes the same growth in amplitude approaching the 
caustic as in linear theory. The expression for the radial wavenumber k ,  is the same 
as in linear theory but is modified by the nonlinear effects. 

The surface elevation obtained from the nonlinear ray solution for small 
amplitudes approaching the caustic is then 

~ ~ ( r , 8 , t )  = 2a, cos c o s ( R B - t ) + 2 a ~  cos2 cos(2R8-2t) ,  (6.16) 

where a, and k, are given by (6.15).  
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The surface elevation from the nonlinear Schrodinger equation is obtained by 
substituting the expressions for v1 and v 2  from (6.4) and (6.5) into the perturbation 
expansion (6.3) for T ( r ,  8, t )  and replacing d by a / € .  We obtain 

7 = 2 4 ~ )  cos (RB-t)+2@)’ cos (2R8-2t), (6.17) 

where a(p) comes from the solution to (6.7) which has the asymptotic form (equation 
(6.12) from Miles 1978) 

(6.18) 

- This is valid for 
z ’ % a b  1,  (6.19) 

as -(nap)$ is the approximate position of the maximum amplitude for the Painlev6 
transcendent for large a- (from Miles 1978). Equation (6.7) was derived using p / R  as 
a small parameter. Rearranging (6.19) gives 

(6.20) 

as a region to match the solutions for large R. Equation (6.20) represents a region 
before the caustic is reached, so the solutions are matched in the approach to the 
caustic where the nonlinear ray solution is still valid. 

To match (6.17) in the region (6.20) to the nonlinear ray solution (6.16) we observe 
that the angular and time dependences are identical, thus we only need to consider 
the radial structure of the solution. First the constant in (6.18), which represents a 
phase of the incident and reflected waves, a,ppears implicitly in the nonlinear ray 
solution (6.16) as a constant of integration. This occurs because the ray solution is 
calculated using a Lagrangian where all phase information is averaged out, while the 
nonlinear Schrodinger equation retains phase information. Differentiating and 
considering the radial wavenumbers k,  we find that the implicit radial wavenumber 
in (6.18) is 

The implicit amplitude factor in (6.18) is 

(6.21) 

(6.22) 

Hence to match (6.16) and (6.17) we compare (6.21) and (6.22) with (6.15) and find 
they are identical if the parameter of the second PainlevB transcendent is 

a- = 2/2At. (6.23) 

The composite description of the wavefield is then the nonlinear ray solution away 
from the caustic region, and the solution of the modified nonlinear Schrodinger 
equation in the caustic region. These two solutions are matched in the region given 
by (6.20). There is no singularity in this solution as the second Painlev6 transcendent 
makes a smooth transition across the caustic from a region of no waves to a region 
of nonlinear waves. In  the matching region the solution of the modified nonlinear 
Schrodinger equation, given by (6.18), can be interpreted as a ray solution and 
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therefore gives the same ray paths as the nonlinear ray solution. Hence we can 
confirm the nonlinear ray solution to be correct, even though the assumption that the 
wave properties are ~ 1 0 ~ 1 ~  varying is invalid at the caustic. 

Appendix 

aid of CAMAL, an algebraic manipulation package, and is 
The averaged Lagrangian for the circular-caustic problem was calculated with the 

L = + kb: - 2 ~ b ,  a,  +tat +hi + U: + 2kbi 

- 2wb, U ,  - 4wb2 a2 + kabi + kpb: + 4k2b, b, a, - k2b: U ,  

- 2wkb, a: - wkb, a, a, - wkb, a, a6 - wkb, a, a, + 2E2pb, b, a, 

- 2wk/?b, U ;  + 2k2P2b, b, U ,  + k2p2b: U ,  + k2p2bf a6 + k3b: U: 

-@k2b, a! + 2k3p2b; a;. 
The variations of L with the coefficients of the free-surface shape 7 are 

Lal = 2a,-w2b,+4k2b, b2-4wkb2a,-wkb,a,-wkb, a6 
- wkb, U ,  - k2ab, 6, + 2k2$b, b, - 2wkpb, a, - 2k2a2b, 6, 

+ 2k2p2b, b, + 2k3b; a, - &h2b,  U: i- 4k3p2b: a,, 

Eaa = 2a2 - 4wb2 - wkb, a,, 

Eas = U ,  - 2wb, - k2b; - wkb, a, + k2p2b;, 

Ea, = a6 - wkb, a, + k2p2b:. 

The variations of E with the coefficients of the velocity potential 4 are 

L,, = 2kb, - 2wa, + 4k2b, a, - 2k2b, U ,  - wka, U ,  - wka, a, 
- ~ k a ,  a, + 2k2ab6 a, + 2k2pb, a, + 2k201'b6 a, + 2k2p2b, a, 
+ 2k2p2b, a, + 2k2P2b, a6 +2k3b, a: -iwk2u; + 4k3P2b, a;, 

Eb2 = 4kb, - 2wa, + 4k2b, a, - 2 w k 4 ,  

&,, = - 2 2 0 a , + 2 k ~ b , + 2 k 2 ~ b , ~ , - 2 ~ k ~ ~ ~ + 2 k 2 ~ 2 b ,  a,, 

E,, = Bkab,. 

The variations of E with respect to the wavenumber involves 

& = 2b: + b; + abi + pbt + 8kb, b, a, - 2kb; a5 - 2wb, a: 

- wb, a, CL, - wb, a, a6 - wb, U ,  a, + 4k/3bl b, a,  - B ~ p b ,  U: 

+ 4kp2b, b, a,  + 2kp2b: U ,  + 2kP'b; a6 + 3k2b; U: - b k b ,  U: + 6k2p2b: u:, 

LF = kb: + 2k2b, 6, a, - Bwkb, U ;  + 4k2$b, b, a, + 2k2pbi U ,  + 2k2Pb: a6 + 4k3pb; u:, 
La = kbi. 
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